Paul Matthews

@pdmzxdd
https://github.com/pdmxdd/expense_tracker

The Expense Tracker allows users to record, and track their expenses. It
gives visibility into spending habits over various time periods. User’s can
create an account, create categories, and add a category to any given

expense. This allows them to gain a better understanding of where their
money is going.

Prospective Users can create an account.
Users can create, and view categories.
Users can create, and view expenses.

As a prospective user I can create an account so that I can start tracking my
expenses. This entire project is built on having users in the system. I had to plan
my database so that categories, and expenses were somehow tied to a given user.
This way only authorized users can access their information.

As a user I can add a category to an expense. [t's not only important to know
how much you spent in a given time period, but it is benefical to know what you
spent money on. Adding categories to expenses allows users to better understand
where their money goes.

I have three tables in my database -- Users, Categories, and Expenses. All three
have a primary key (id). Categories is linked to Users through the User_ID foreign
key, and Expenses islinked to both Users, and Categories through the User_ID,
and Category_ID fields.

Users have a one to many relationship to Categories, and Expenses. Categories
have a one to many relationship with Expenses.

All expenses are timestamped, and have an amount. This allows the ability to
figure out how much money was spent in a given time.

Rust

Rocket

Tera templating

Diesel

FoundationCSS

Chrono (3rd party crate for Rust that handles time)

Berypt (3rd party crate for Rust that securely encrypts, and decrypts
data)

Register

Email paul@launchcode.org

Password ecccccee

Confirm Password

Register

Login

Home Expense Category

Account created for: paul@launchcode.org

Welcome paul@launchcode.org

Please select something to do from the menu above

Logout

Table

[_diesel_

Owner Comment

|_schema_... expense_tracker

[categories expense_tracker
[] expenses expense_tracker

BB users

expense_tracker

Edit Data - budget (localhost:5432) - budget - public.users NI @

File Edit View Tools Help

e,

gy B @ W W o ‘m

i id Temall password

[PK] serlal character varying(75) character varying(75)
paul@launchcode org $2y$07$sPO7GZqSJ/1Yu6w3LzroLOkaQLXVSf

Categories Expense Category

Categories

Category Name Gas

Category Description Gas for my car

Add Category

Current Categories
Category ID

No categories yet! Please add one.

Category Description

Edit

Logout

Delete

Categories Expense Category

Category successfully added

Categories

Category Name

Category Description

Add Category

Current Categories
Category ID Category Name

1 Gas

Category Description

Gas for my car

Edit

Click to edit

Delete

Click to delete

Logout

Table owner Comment

[_diesel_schema_... expense_tracker
BB categories expense_tracker
[expenses expense_tracker

] users expense_tracker

Edit Data - budget (localhost:5432) - budget - public.categories v A x]

File Edit View Tools Help

oy R @ W W

user_id [name ‘descrip |
|[PK] serial integer character varying(75) character varying(200)
| 1 Gas Gas for my car

Expense Expense Category Logout

Expenses

Category Gas
Expense Name

Gas for Prius.

Expense Amount 18.92

Add Expense

Expenses
No Expenses yet! Please add one above.

Expense Expense Category Logout

Expense successfully added

Expenses

Category Gas
Expense Name

Expense Amount

Add Expense

Expenses

Created Expense Name Expense Amount

2018-04-17 17:35:40.470131852 UTC Gas for Prius. 18.92 V

Comment

Table owner

[_diesel_schema_...
[] categories
B expenses

expense_tracker
expense_tracker
expense_tracker

expense_tracker
Edit Data - budget (localhost:5432) - budget - public.expenses v ~ €

File Edit View Tools Help
FER S G ‘m
name

"‘user_'ihaicategory_'i‘dpicreatedﬂ
|character varying(35) ~|charact
UTC|Gas for

B o A%

e,

[PK] serial integer integer -
' 1 1 2018-04-17 17:35:40.470131852

Scratch pad

te Expense Post request that implement IsUser guard
2", rank = 1, data = "<expenseform>")]
fn expense post(user id struct: IsUser, expenseform: Form<ExpenseForm>) -> Result<Flash<Redirect>, Flash<Redirect>> {
let expense form = &expenseform.get();
let category id = expense form.category id.to string();
let expense name = expense form.name.to string();
let expense amount = expense form.amount.to string();
if expense _amount == "" {
| return Err(Flash::error(Redirect::to("), "Amount cannot be blank!".to_string()));
}
else {
let float expense amount: f64 = expense amount.parse().expect("Not a number");

if float expense amount < 0.0 {
] return Err(Flash::error(Redirect::to("), "Amount cannot be less than @!".to string()));
}
else {
//I 2dd create_expense function in the
let str user id = user_id struct.o;
let int user id: i32 = str_user id.parse().expect("Not a number");
let int category id: i32 = category id.parse().expect("Not a number");
let str_expense amount = float expense amount.to_string();
create_expense(&int _user_id, &int category id, &expense name, &str_expense amount);
return Ok(Flash::success(Redirect::to("/e), "Expense successfully added".to _string()));

The code from the previous slide handles an expense post request.

The route contains 2 request guards (IsUser, and Form<ExpenseForm>). This is
Rocket’s way of validating the user has permission (they are a logged in user), and
the necessary data to access this route (they have a fully filled out ExpenseForm).
Then the code parses the form, storing it's information in variables to be used later.
If the information is still in an incorrect format, it returns a flash message to the
expense get route to notify the user of mistakes.

Then the code gets the user id from the IsUser object, and converts the data into the
format the Database requires, and then writes the new object to the Database by
sending it to the ExpenseController.

Finally a flash message, and redirect are returned to notify the user of the
successfully added expense.

e Thisisthe largest projectI have built with Rust to date. Rustisa
multiparadigm programming language, and to build this project I had to
learn more about Enums, Structs, and [became much more proficient at
reading documentation.

e Thisisthe first project I have built with Rocket. Rocket does some things that
are very familiar to web frameworks [have worked with, but has some of its
own unique features. l.e Request Guards that allow any HTTP requests to be
defined with extra incoming data -- so you can verify users, or API keys
easily. You can also define routes with the same end point, that don’t contain *
the required information to essentially overload any defined route.

Diesel, an ORM for Rust. I haved used Postgres before, but have never used
Diesel, and had to learn how it handles schemas, and migrations. After
picking up the basics it was easy to add new tables, and create controllers for
my application.

Foundation 6 significantly changed alert messages from Foundation 5. [was
using Foundation 6, and tried to use alert messages how [had in the past, but
their functionality is quite different from the last time [worked with them.

Expenses can be edited, and deleted.

Categories can be edited, and deleted.

Users can change their passwords, or email addresses.

Users can view reports of their expenses, either by a set amount of time, or
by a specific category.

A monthly expense report is emailed to the user for the previous month, at
the start of each month. [will work with the gmail API to accomplish this.
The database resource pool is handled by R2D2, I will have to learn how to
work with R2D2 and Diesel together.

