
Expense Tracker
Paul Matthews

@pdmxdd
https://github.com/pdmxdd/expense_tracker



Description

The Expense Tracker allows users to record, and track their expenses. It 
gives visibility into spending habits over various time periods. User’s can 
create an account, create categories, and add a category to any given 
expense. This allows them to gain a better understanding of where their 
money is going.



Features
● Prospective Users can create an account.
● Users can create, and view categories.
● Users can create, and view expenses.



Planning - User Stories
As a prospective user I can create an account so that I can start tracking my 
expenses. This entire project is built on having users in the system. I had to plan 
my database so that categories, and expenses were somehow tied to a given user. 
This way only authorized users can access their information.

As a user I can add a category to an expense. It’s not only important to know 
how much you spent in a given time period, but it is benefical to know what you 
spent money on. Adding categories to expenses allows users to better understand 
where their money goes.



Planning - Database
I have three tables in my database -- Users, Categories, and Expenses. All three 
have a primary key (id). Categories is linked to Users through the User_ID foreign 
key, and Expenses is linked to both Users, and Categories through the User_ID, 
and Category_ID fields.

Users have a one to many relationship to Categories, and Expenses. Categories 
have a one to many relationship with Expenses.

All expenses are timestamped, and have an amount. This allows the ability to 
figure out how much money was spent in a given time.



Technology Stack
● Rust
● Rocket
● Tera templating
● Diesel
● FoundationCSS
● Chrono (3rd party crate for Rust that handles time)
● Bcrypt (3rd party crate for Rust that securely encrypts, and decrypts 

data)



Demo - Create User 1



Demo - Create User 2



Demo - Create User 3



Demo - Create/View 
Category 1



Demo - Create/View 
Category 2



Demo - Create/View 
Category 3



Demo - Create/View 
Expense 1



Demo - Create/View 
Expense 2



Demo - Create/View 
Expense 3



Demo - Code Example 1



Demo - Code Example 2
The code from the previous slide handles an expense post request.

● The route contains 2 request guards (IsUser, and Form<ExpenseForm>). This is 
Rocket’s way of validating the user has permission (they are a logged in user), and 
the necessary data to access this route (they have a fully filled out ExpenseForm).

● Then the code parses the form, storing it’s information in variables to be used later. 
If the information is still in an incorrect format, it returns a flash message to the 
expense get route to notify the user of mistakes.

● Then the code gets the user id from the IsUser object, and converts the data into the 
format the Database requires, and then writes the new object to the Database by 
sending it to the ExpenseController.

● Finally a flash message, and redirect are returned to notify the user of the 
successfully added expense.



What I Learned
● This is the largest project I have built with Rust to date. Rust is a 

multiparadigm programming language, and to build this project I had to 
learn more about Enums, Structs, and I became much more proficient at 
reading documentation.

● This is the first project I have built with Rocket. Rocket does some things that 
are very familiar to web frameworks I have worked with, but has some of its 
own unique features. I.e Request Guards that allow any HTTP requests to be 
defined with extra incoming data -- so you can verify users, or API keys 
easily. You can also define routes with the same end point, that don’t contain 
the required information to essentially overload any defined route.



What I Learned 
continued

● Diesel, an ORM for Rust. I haved used Postgres before, but have never used 
Diesel, and had to learn how it handles schemas, and migrations. After 
picking up the basics it was easy to add new tables, and create controllers for 
my application.

● Foundation 6 significantly changed alert messages from Foundation 5. I was 
using Foundation 6, and tried to use alert messages how I had in the past, but 
their functionality is quite different from the last time I worked with them.



What’s Next
● Expenses can be edited, and deleted.
● Categories can be edited, and deleted.
● Users can change their passwords, or email addresses.
● Users can view reports of their expenses, either by a set amount of time, or 

by a specific category.
● A monthly expense report is emailed to the user for the previous month, at 

the start of each month. I will work with the gmail API to accomplish this.
● The database resource pool is handled by R2D2, I will have to learn how to 

work with R2D2 and Diesel together.


